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SOME EXAMPLES OF THE APPLICATIONS OF THE TRANSONIC
AND SUPERSONIC AREA RULES TO THE
PREDICTTION OF WAVE DRAG

By Robert L. Nelson and Clement J. Welsh
SUMMARY

The experimental wave drags of bodies and wing-body cambinations
over a wilde range of Mach numbers are compared with the computed drags
utilizing & 2h-term Fourier series application of the supersonic area
rule and with the results of equivalent-body tests.

The results indicate that the equivalent-body technlque provides s
good method for predicting the wave drag of certain wing-body combina-
tions at and below a Mach number of 1. At Mach numbers greater than 1,
the equivalent-body wave drags can be mlsleading. The wave drags com-
puted using the supersonlc area rule are shown to be in best agreement
with the experimental results for confilgurations employing the thinnest
wings. The wave drags for the bodies of revolution presented in this
report are predicted to a greater degree of accuracy by using the frontal
projections of oblique areaes than by using normal areas. A rapid method
of computing wing area distributions and area-distribution slopes is given
in an appendix.

INTRODUCTION

The aree rule, first advanced by Whitcomb in reference 1, has con-
siderably altered the methods for predicting wave drag of wing-body com-
binations. Studies leading to the discovery of the area rule showed that
interference drag between wing and body components could be very large.
Therefore, estimation of drag by component bulldup without somehow evalu-
ating the interference drag could glve misleading answers. However, in
consequence of the transonic area rule, a valusble tool was made avail-
able to the designers in assesslng the transonic drag. This was the
equivalent-body concept, which states that at transonic speeds the pres-
sure drag of the airplane 1s the same as that for a body of revolution
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having the same longitudinal dlstribution of cross-sectional area. Ag a
result, the drag of the configuration is obtained by either estimating
or experimentally determining the equivalent-body drag. Experimental
checks for airplane configurations presented in reference 2 generally
support this concept in the transonic speed range.

The supersonic area rule, given by Jones in reference 3, provided a
powerful method for calculating the wave drag at supersonic speeds. In
references L4 and 5 the mechanics of the drag calculations were discussed
together with a number of comparisons of calculated and experimental
drags generally at low supersonic speeds. Jones pointed out in refer-
ence 5 that the method could be expected to give good results for thin
wings mounted on vertically symmetrical bodies. Iater, Lomax in refer-
ence 6 gave the complete linearized theory expressions for the drag.

The added terms in Lomax's result represented the limitation polnted out
by Jones. : - -

The purpose of the present paper 1s to provide a better feel for
the range of applicability of both the transonic and supersonic ares
rules. For the transonlic area rule, this is done by making additional
comparilsons between equivalent-body and wilng-body experiments. For the
supersonic areas rule, comparisons are made of calculated and experimental
results for both body and wing-body combinations over a wider range of Mach
numbers than heretofore made. The supersonic-area-rule calculations were
made by using a 2k-term Fourier series expression for the slope of the area
distribution.

SYMBOLS
A frontal projection of the area cut by a Mach plene or wing
aspect ratio - - ’
T
_2 dan _ Bz
an = El/; <dx > q)sin ng ag
Cp drag coefficient, é% )
Cp preéssure coefficient - -
c wing local chord
g root chord of particular pointed wing tip
Cp wing root chord o j

Yoy
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Cy wing tilp chord
D drag
a maximum body diameter, 2rpy
f regultant pressure force
£(v) wing-thickness-distribution function,
ma.x
G(K,VO) wing-area-distribution function
H(K,VO) wing-area-distribution slope function
K m(l + B cos ® 6) for the left-wing panel; m(l
tan A
the right-wing panel
1 length of configurmtion
1y total length of area distribution
1/a body fineness ratio
M Mach number
m =4 L+ tan A
(-
n integer
q dynamlc pressure
r local body radius
Tm maximum body radius
S reference area
Sb body frontal area
Se wing exposed area

wing total plan-form area

B cos &

tan A

) for
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8 wing semispan : -
By semispan of particular pointed-tip wing “w
5 7 .
t/c wing thickness ratio, ngax - ] -
X,¥,2 Carteslen coordinates = N
Xo point of intersection of Mach plane with the x-axis
x! x~coordinate measured fram wing leading edge
Xq dummy veariable ’ oo
Z, local maximum wing ordinate
B = M2 - 1 -
n=%
¢ = cos'l(z X . 1) -
it
A wing leading-edge sweepback angle _ v
Ct
A wing teper ratio, —
T
B Mach angle, sin~t % )
v =X
c
vy value of v at root of particular pointed-tlp wing
Vo value of v at root of actual wing
0 angle between z-axls and line of intersection of Mach plane

with the y,z plane
REVIEW OF THE BASIC THEORY

From reference 6, the equation for the wave drag of any system of N
bodies or wings and bodies can be written as: : -

j Ny Yot im0
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D___1 fen deflt dxfzt o, d°a(x,0) _ B ag(x,0)||a®a(x3,0) _
a m 0 0 0 d_x2 2q dx d.x12
B df(x 2 log(x - xl) (1)
2q dxq

The equation is subJject to the usual limitations of the linearized theory.

Before discussing the terms 1n the drag equation, it 1s well to review
the definition of Mach planes. The physical significance of equation (1)
1s understood if the confiliguration is cut by Mach planes. Mach plenes are
easlly visualized by consldering a Mach cone originating at a point on the
x-axis which is alined with the remote relative wind. A Mach plane 1s
slmply a plane tangent to the Mach cone and at an angle of roll, 6 about
the x-axls measured from the y-axis. By moving the vertex of the Mach
cone along the x-axls, a serles of parallel Mach planes will cut the con-
figuration for a fixed roll angle 6.

In the drag equation the term A(x,0) represents the frontal pro-
Jection of the oblique area cut by a particular Mach plane, whereas £(x,0)
represents the net force normsl to the stream directlon on this section in
the 6 direction. These relatlonshilps are illustrated in figure 1 for
angle of roll 8 of the Mach plane of 0° and 90°. By neglecting the
term é% Ezéﬁigl, the equation reduces to the supersonic-area-rule formula
glven by Jones in reference 3. Evaluation of f(x,e) requires the pres-
sure distribution on the configuration which when integrated over the
configuration gives the drag directly. As a result, large values of

g% df(x,8 impose a limitation on the supersonic area rule, even within

the framework of the linearized theory. .

It is not the purpose of the present paper to evaluate the drag of
configurations including the effect of the pressure term but to evaluate
the drag of configurations using the supersonic-area-rule formula of
Jones., The influence of the pressure term was evaluated for one simple
case.

Equation (1) can be written in coefficient form as

2n
Cp = %fo op(8)as (2)

TS ONF IDENTIAT
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where =
l ly /.2 2
1 tfté__&_ﬁg Ao B A \ioo(x - xi)ax dxs (3
cple) = 2:18/; . <dx2 5 = ﬂ—-ZGXl %3 o og(x - x1) 1 (3)

The quantity CD(G) 1s most readily determined by solving the inte-
gral for CD(G) through a Fourier sine series expression_for %% fol-

lowing the method of reference 7T if -
4 - cos"l<2 x 1)
2

7
an = %k/; (%% - % g)sin ng ag

then Cp(6) can be written as

2
cp(e) =fs—>:n_an -

For the computations of this paper, only 24 terms were used in the

Fourier sine series expression for g%. Thus,
n=24

Cp(8) =f:—s- Z ney
n=1

2

BODY DRAG RESULTS

For bodies of revolution, the calculation of the drag is simplified
to some extent because the area dlstributions are identical for sl1l roll
angles. However, except for high-fineness-ratio bodies, it is not pos-
sible to assume that the frontal projection of the oblique area cut by
Tthe Mach plane 1s the same as the normal area. Figure 2 shows an example
of this for two parabolic bodles of revolution having different filneness
ratios and shapes. The area-distribution curve slopes were calculated
from the expression

aa _ 2 [* (x - xp)dx

TR n [PRG - (k- %0

e BHERY
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The derivation of this expression 1s given 1n appendix A. It has also
been assumed for the calculastions (and all succeeding body calculations)
that a cylinder can be added at the base of the body without altering
the drag. If this were not done, the solution would require the flow to
£111 the area behind the base which would exceed the limitations of the
linearized theory. Figure 2 shows large changes in the peak slope over
the afterbody of the fineness-ratio-6.04 configuration; these changes
would lead to a significant drag variation with Mach number.

The evaluation of the slope of the oblique area distributions i1s
extremely difflcult except for simple bodies. There naturally arises
the question as to whether this 1s worth while if the pressure term is
lgnored.

As derived in sppendlix B, the local force acting on the oblique
area of a body of revolution is

dac
£ _ _ b
q- RA dx
£ ac
The only assumption made In derivation of 3 1s that EER is

constant over the obllque area. This 1ls a reasonable assumption except
for bodies having discontinuities, and high local slopes. Then,

Thus, the error in the drag introduced by ignoring the pressure term 1s
dc
P

dependent on the pressure gradient

It would be expected that the drag for a conlcal nose with an
attached shock wave over which the pressure 1is constant at zero angle of
attack would be least affected by the pressure term. (The pressure term
takes on a value only near the Juncture with the cylinder; however, the
pressure term was not evaluated in this region.) Figure 3 presents a
comparison of the drag of varlous cones calculated with the supersonlc-
ares-rule formula with the exact theory drag of reference 8. The lowest
Mach number of the comparison corresponds to the lowest Mach number for
entirely supersonic flow on the cone as calculated with the exact theory.
The highest Mach number of the comparison was arbitrarlly taken as that
at which the slope of the Mach line equaled one-half the slope of the
nose. The agreement between the two theories is remarkable, within
5 percent except for a few points.

A nse
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2
A better comparison may be made by plotting CD(Z/rm) against
Brm/l, the quantity which defines the frontal projection of the oblique

ares distribution. This has been done in figure 4 to give drag in dimen-
slonless or collapsed form. The drags from exact theory (5° half angle
cone was chosen as representative), slender body theory (ref. 9), and
supersonic-area~-rule theory are shown. The comparison shows the great
improvement  of the area-rule theory over the slender-body theory at
values of Brm/l greater than 0.2, and the good agreement of the area-~

rule result with the exsct theory to Brm/l of about O0.7. At higher
values of Brm/l the area-rule theory is in error, possilbly first because

the pressure term is neglected but finally, near Brp/l = 1, because the

assumptlons of the linearized theory are violated. At Brm/l = 1, the

Mach line lies on the cone surface, which corresponds to the realm of
hypersonic flows. (See ref. 10.)

For a body with curvature, for exsmple, a nose of parabolilc profile,
the pressure over the nose 1s varisble, and the influence of the pressure
term may be significant., Figure 5 presents the drag for noses of parabolic
profile 1n collapsed form. Here the supersonic-area-rule theory is an
improvement over slender-body theory but 1n only partial agreement with
the more exact second-order theory of reference 11l. Inclusion of the
pressure term, evaluated by using second-order pressure distributions,
however, does glve agreement with some of the second-order-theory results.
Since the second-order-theory drags do not collapse lnto one curve, agree-~
ment should be, expected only with those points for which the pressure dis-
tribution used in evaluating the pressure term apply. However, this was
not the case. For example, the pressure distribution used for the pres-
sure term calculation at Brm/l = 0.3 correSponds to the flagged symbol.

For the parabolic noses, both the area-rule theory and the area-rule
theory plus the pressure correction cannot be expected to apply near and
above Brm/l = 0.5, where the slope of the Mach line equals the slope of

the nose tip. -

Figure 6 presents s comparison of the pressure drag from supersonlc-
ares-rule theory with experiment and slender-body theory for a family of
parabolic bodies of revolution. The experimental drags were taken from
references 12 and 13. In determining the experimental pressure drags,
the frictlon drag was assumed turbulent and évaluated by using the sub-
sonic drag level and the results of reference 14 for the effects of Mach
number and Reynolds number; the fin pressure drags were assumed identlcal
and taken from reference 15; and the base drags were small and were sub-
tracted when avallable. The slender-body-theory drags were calculated
using the curves of reference 9. . )

NSRS
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As would be expected, the comparlsons show the increasing abillity of
both the area-rule theory and slender-body theory to predict the drag as
the body fineness ratio 1s increased. In most cases, the area-rule theory
offers a significant Improvement over slender-body theory. The area-rule
theory and slender-body theory are in sgreement near M = 1, since at this
Mach number the supersonic-area-rule theory reduces to slender-body theory.

From these nose and complete-body comparlsons that have been made,
the followlng conclusion can be drawn. The areas-rule drag of bodles can
be predicted to a greater degree of accuracy by uslng the frontal projec-
tlon of oblique areas at a given Mach number than by using normal areas,
i1f, at the Mach number under consideration, the limitations of the line-
arized theory are not exceeded. This 1s illustrated by the comparison
between the drag at a glven Mach number and the drag near M = 1 especilally
for the low-fineness-ratio bodies. It is not to be inferred from the above
statement that the supersonic-area-rule method is recommended for evalu-
ating the drags of bodies of revolutlon. However, when the drags of wing-
body combinations for which the body area dlstribution 1s needed are deter-
mined, the obligue area distribution should be used if the body is of low
fineness ratio or hes low-flneness-ratio components.

CATCUIATION COF WING-BODY DRAG

The difficulty 1n computing the wave drag of wing-body configurations
can be considerably reduced 1f the configuratlon meets the following con-~
ditlons: Zflrst, the body is of sufficlently high fineness ratio so that
the change in body-area distributlon with Mach number 1s small, and sec-
ond, the wing is thin. These conditions Imply also that the pressure
term 1s negligible., Some feel for the body fineness ratios necessary for
the gbove condition to be met can be obtained from the preceding sectlon
on bodies of revolution. The assumption of a thin wing allows the Mach
plane intersecting the wing obllquely to be replaced by & plane perpen-
dicular to the wing chord plane intersecting the wing plane glong the
same line as the Mach plane. Note that, at zero roll angle, the Mach
plane 1s normal to the wing chord plane but 1s not normal to the wing
chord plane at any other roll angle for a Mach number other than M = 1,
Also the angle between the Mach plane and the normal to the wing chord

plane is greatest and equal to ten™'B at a roll angle of 90°.

Appendix C presents a simple analytical method for evaluating wing
area dlstributlons and area-distribution-curve slopes. The curves neces-
sary for evaluating these quantities (figs. 16 and 17) are applicable only
to 65A seriles alrfoils, but similar curves can be made up for other air-
foll sections.

FOUONEOERTET
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In order to get an ldea of the applicability of the thin-wing assump-
tion, a calculation has been made of the true area~distribution-curve-
slope variation for 60° delta wing having en NACA 65A006 airfoil section
for a roll angle of 90° and s Mach number of 1.414k. In order to simplify
the calculetion, the wing was spproxlmated by a sufficient number of
linear-slope elements to define the alrfoll section adequately. With
this approximation the Mach plane lntersection with the wing surface was
made up of straight lines. The expression for the frontael projectilon of
the oblique area was then easily evalusted and differentiated to obtain
the slope. The results of the celculatlon are presented in figure 7.
Although the slopes for the upper and lower half winge are significantly
different, the total slope agrees almost exactly wilth the slope cobtained
by using the thin-wing essumption. On the basis of this result, it is
felt that the thin-wing solutlon should be adequate for wings of present-
day interest.

For the wing-body combilnations of this paper, an additional simpli-
fication was allowed in the supersonic-areas-rule wave-drag calculatlons.
Since the tall fins mounted on the models were thin and relatively small
(see ref. 16), their drags were subtracted as tares. Then, since the
bodies for all cases were of high fineness ratio (and identical), the
body-area-distribution-curve slopes were considered independent of Mach
number, and the changes in the area-distributlion-slope curves with Mach
number and roll angle were due entlrely to the wings. As derived in
appendix C, the ares distribution for a given wing (m fixed) is depen-

dent only on the value of E—EEE—E. Thus, the area-distribution-slope

tan A
curves for the wing-body configuration are dependent only on the value
of E%EE:KE' Then, from equation (2) and because of the symmetry of the
an
configuration, -

/2
Cp(M) = %j; Cp(e)as - -

In order to obtain the wave drag of the conflguration, a plot of Cp
against 6 1is required. This can be computed if a plot of Cp ageainst

E{Eﬁ?xg is given, since the angle 6 1s known for fixed values of taE_A
and Efsgsxg' The configurstion drag 1is simply the average drag between
an

= L
0 0 and 5

For the wing-body calculations of this paper the bodles were identi-
cal. The body-areas-distribution-slope curves are shown in Pfigure 2(b).
The curve for M = 1l.414 was chosen as representative for the Mach number

| MR i i
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range of interest. The wing ares distributions and ares-distributlion-
curve slopes were obtained by using methods similsr to that glven in

appendix C. In additlion, a limiting value of EE%%?KE

configurations having blunt leading-edge alrfolls. (Above Ten n = 1,

the Mach line lies behind the wing leadlng edge, and the linear theory 1s
no longer valid for blunt airfoils)
/

= 0.8 was set for

An example of the wave drag calculstion for the most extreme configu-
ration investigated (60° delta wing, NACA 65A006 sirfoil) is presented in

figures 8, 9, and 10. TFigure 8 shows nondimensional plots of %% against

¢ for various values of EEEEsKE. Figure 9 shows the effect on Cp of
ar .
the number of terms 1n the series solution. Except at EEEEsKg = 0 and 0.8,
an

convergence was spperently obtained within 24 terms. Figure 10 shows the

varlation of the area distributlon drag with EE%%;KQ’ the variation of

area distribution drag with roll angle, and the variation of the config-

B
uration drag with r—

WING-BODY DRAG COMPARISONS

Figure 11 presents some wave-drag comparisons for wing~body combina-
tions. The experimental wing-body results were taken from references 16
to 19, The wing-body wave drags were obtained in the following menner.
The friction drags were assumed to be turbulent and were estimated by
using the results of reference 14, Base drags and fin pressure drags were
subtracted using the results of reference 16. The equivalent-body drags
for a Msch number of 1 were obtalned experimentally by using the helium-
gun technique described in reference 2. These models had four scaled
tail fins. The friction drag wes assumed to be the subsonlc drag level
corrected at higher speeds for Reynolds number and Mach number by using
the results of reference 14. Base-drag rise and fin-drag rise were not
evaluated for the equivalent-body models. These quantities, however,
should be small in the Mach number range where comparilson 1s valld. The
supersonic-area-rule-theory drags were evaluated by using the method of
the preceding section. No attempt was made to evaluate the drag with
the pressure term included. The drag coefficlents presented in figure 11
are based on total wing area.

The inability of the supersonic-area-rule theory to predict the drag
near M =1 1is evident for nearly all cases. However, the agreement at
the higher Mach numbers between the theoretical drags and the experimental
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wing-body drags 1s excellent and within the accuracy of evaluating the
experimental wave drag, except for three configurations. Two of these
configuretions (figs. 11(c) and 11(g)) had 6-percent-thick wings which
were the thickest wings investigated. The third configuration (fig. 11(h))

had a 4— percent-thick airfoll but with falrly steep wedge components.

For these configurations, a significant effect of the neglected pressure
term may be possible. As a result, the drags calculated for configura-
tlons having wings of these thicknesses and sections should be viewed
with caution.

The comparisons in figure 11 show that the equivalent-body drags
give a good epproximation to the experimental wing-body drags up to a
Mach number of 1, except for the two configurations having 6-percent-
thick wings (figs. 11(c) and 11(g)). This result is in agreement with
reference 2 which shows the valldity of the transonic-aree rule decreases
with increasing wing-thickness ratlo. At Mach numbers above 1, the agree-
ment 1s varieble but tends to be consistent with the flatness of the cor-
responding theoretical curve. That 1s, as the theoretical drag variation
wilth Mach number beccmes smaller, the equilvalent body gives a better
approximation of the superscnic-drag level. | This would be expected, since
a flat theoretical curve indlicates that the varietlon in area-distribution .
drag with roll angle or Mach number Is smali. Then the drag for the Mach
number 1 or roll angle 90 area distribution (corresponding to the equiv-
alent body) is representative of the configuration drag.

Figure 12 shows the compsrison between experimental-configuration _
draeg and equivalent-body drag for an airplane configuration. The com-
parlson shows an extreme example, compared with the relastively good results
of reference 2, of the inability of the equivalent body to predict the
supersonlc-drag level. The equivalent-body drag 1s approximately LO per-
cent low in spite of the low aspect ratloc of the configuration. Apparently,
the confilguration tall surfaces cause the area distribution to change mark-
edly at low supersonic speeds. Below M = 1, the equivalent body gives a
falr representation of the conflguration drag. The drag of the configu-
ration minus the tail surfaces could probably be calculated to the degree
of accuracy shown in figure 11. The Influence of the tail surfaces, how-
ever, may be difficult to evaluate. If the horizontal tail supports a
load when the configuration 1s at zero 1ift, the influence of the pres-
sure term may be significant. Although no supersonic-ares-rule drag cal-
culatlons were made for this alrplane, reference 20 1ndicates that gen-

erally good predictions of complete-airplane drag can be made .t

lSubsequent to the preparation of this paper, NACA RM A56I07 has
been prepared at the Ames Laboratory and presents supersonlc-area-rule
calculations for a configuration similer to the one shown in figure 12
but with small differences in ares distribution in addition to the
absence of a canopy.
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EVALUATION OF COMPONENT AND INTERFERENCE DRAGS

As was shown in the preceding section, the supersonic area rule can
be a useful tecol in evaluating the supersonic drag of a wing-body con-
figuration. In order to assess the efficlency of the combination as a
whole, however, the effects of the combination on the component drags
and the interference drag between the components must be known. The
supersonic area rule provides a valuable method for evaluating these
effects.

The supersonlc-areas-rule equation can, of course, be used in evalu-
eting the drags of individual wing and body components. This was done
for a number of bodies in a previous sectlon of this paper. The same can
be done for isolated wings. An example of this is shown in figure 13
where the drag of delta wings having 65A series sections is plotted in
collapsed form. The area-rule result is compared with a result cbtained
by the method of Beane (ref. 21). The two methods are just two forms of
the same linearized wilng theory. The agreement between the two methods
is good.

An example of the effect of the wing-body configuration on wing drag
is presented in flgure 14. The calculation is for the configuration having
the closest agreement between the theoretical and experimental drags
(fig. 11(p)). In this figure, the drag of the exposed-wing panels based
on total and exposed wing areas 1s compared with the isolated wing drag.
Separation of the wing panels gives approximately a 10-percent reduction
in wing drag cocefficlent st Mach numbers above 1l.3. As the Mach number
approaches 1, this favorable effect disappears. This would be expected,
for at M = 1 +the area distributions of the exposed wing panels and the
isolated wing would be identical if the body were cylindrical.

Figure 15 shows an evaluation of the Interference drag for the same
configuration. The sum of the calculated body and wing drags is compared
with the calculated configuration drag. The curves show & favorable inter-
Terence effect at Mach numbers below M = 1l.3. At Mach numbers above 1.3,
interference drag is, for all practical purposes, zero. Thus for this
configuration, at Mach numbers greater than 1.3, the only beneficial effect
of combining the wing with the body comes from the separastion of the wing
panels.

CONCLUSIONS

An investigation has been made of abilities of the equlvalent-body
technique and a 2L-term Fourier series application of the supersonic-
area-rule method to predict wave drag at transonic and supersonic speeds.
From the theoretical and experimentsl comparisons made, the following
conclusions can be drawn:

YN PRI
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1. The area-rule drag of the bodies of revolution presented in this
report are predicted to a greater degree of accuracy by using the frontal
projection of oblique areas at a given Mach number than by using normal
areas.

2. The supersonlc wave drag of slender-wing——body configurations can
be predicted with the supersonlc-srea-rule formula. For the wing-body
configurations investigated, the best agreement was obtained for the con-
flgurations employing the thinnest wings. -

3. The equivalent body technlque provides a good method for predicting
the wave drag of certaln wing-body combinations at and below Mach number 1.
At Mach numbers above 1, the equlvalent body wave drags c¢an be misleading.

Langley Aeronsutical laboratory,
National Advisory Committee for Aeronautics,
langley Field, Va., April 6, 1956, -
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APPENDIX A

AREA DISTRIBUTION SLOPE FCR BODIES COF REVOLUTION

CUT BY OBLIQUE MACH PIANES

The area distributions are identical for all roll angles. For
gimplicity a roll angle of 90° will be used in the derivation.

P—— e xu

=7 X = Xq + Bz z
. //

dz “u
23

—— . —A

—-(-———XO

(=)

The frontal projectlon of the obligque area cut by the Mach plane (see
sketch (a)) is given by the equation:

Z
A=2/uydz
Z

]
From the equation for the Mach plaene, z 1s related to x by

X - %o
B

and

dz = dx

o] Lo

The equation relating y and x 1s given by

2
o B T = [ - S LW - G )

SRR
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Then,

A = é% xu\/LQRE(X) - (x - xo)2 ax =
B X'L
Differentiating the expression for A glves

9&_ _ EL Xy (X - XQ) ax
dXO BE X-L \/BZRE(X> _'”(X _ XO)2

where x; end xy are the roots of x =Xxg - PR(x) and
respectlvely.

3. O\MIRRTTERR T

(h2)

(3)

x = xp + PR(x),
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APPENDIX B

THE NET FORCE ACTING ON THE OBLIQUE AREA OF A BODY OF

REVOLUTION AT ZERO ANGLE OF ATTACK

For a body of revolution at zero aengle of attack, the net force is

independent of roll angle.

of 90°,

The derivaetion will be made for a roll angle

as LP
J (e}

X

r = R(x)

dz
X = Xq + Bz
dy

N

The net force in the
90°) (see sketch (b)

-

(b)

® direction (the z-direction for a roll angle of
) can be written as

f
E:-J;CPSinUdS

Since 485 = dez + dz® and sin o = 4y

The pressure coefficlent at zero 1ift is a function of x

The equation for Yy
dix A as follows:

Tr—
de2 + dz?

17

only.
in terms of x 1s glven by equation (1) of sppen-

y =3 [FG) - G - %0)°
WNDESTE HOERTIATR
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and
BR(x)E - (x - x0)
dy= de X XO =
BVpReRA (x) - (x - x0)2

Then, the net force can be written as —

T = -2fyocpdy +2fy0cpdy
0 upper surface 0 lower surface
o dr
£ _ xo P[B R(X)— - (X - XO)] ax + g XO Cp B R(x)g.}{— - (X - XO)] dx
q B B
oo\ [pPRR(x) - (x - %0)? ¥ JBPRE(x) - (x - x0)?

£ _2 [xu CP[BER(X)% - - xoﬂ
f.z2

B Xz \/BgRg(X) _ (X _ XO)E

Integrating the expression by parts gives

a
% :u giﬁ\/BZRE(X) - (x - %0)°

B8

is essentlally constant between the limits of integrations,

dcC .
% = % _;Ek/r b BQRE(X) - (x - X632 dx
*1

Then, from equation for the frontal projection of the oblique area
in sppendix A (ea. (A2))

£ g
a ﬂAdx

N )
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APPENDIX C

METHOD FOR DETERMINING WING-AREA DISTRIBUTION AND

AREA-DISTRIBUTION-CURVE SLOPE

This method assumes that the wing is thin and that the oblique Mach
plane can be replaced by a plane perpendilcular to the wing chord plane.
The method also assumes the wing has stralght leading and trailing edges
and constant thickness ratio.

The method 1s developed first for polnted-tip wings. Then, correc-
tions are made for curved-wing—body Junctures and finite wing tips. In
addition, the right- and left-hand wing panels are considered separately.

Pointed-tip wings.- Consider the right-wing panel shown in the fol-
- lowing sketch:

BN
/
/

50
‘41/;5:2\;;\; v(B cos 8 - tan A)
S e
— —
: _ N\
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The frontal projection of the area of one wing panel cut by the Mach
plane is given by -

A= 2u[; dy

and % can be written as

Then, for % constant,

= L L
A = sncy 2 u/‘f(v) CO»dﬁ

The value of 1 and v are related by the intersection line of the Mach
plane and the wing chord plane for the right-wing panel given by the
equation -

x' = x4 + v(B cos © - tan A)

and for the left-wing penel by the equation

x! =x0+y(|3 cos 6 + tan A)

Then,
= S0 50
V= iy t EEJ_(B cos @ % ﬁanA)q
With
c — -
oA
8
V= % n[vo + %(B cos 6 t tanA)n}
and
v - v
7= O .
(tan A £ B cos e).ﬂ -V
co
Let
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In terms of tapered wing geometry, m 1s given by

A L+ N tan A
i N
Then,
. Vo =V
(l + B _cos e)
tan A
Tet

K=m(l+w—e>

for the left-wlng panel and

K:m(l-ECOS 6)

for the right-wing panel. Then,

VA -
— 0

1 K-v

dn K—Vo

c K-VO

oS A
2

< an = K- Vo) o

CO (K—V)3

The equatlion for the area can then be written as

V
_ £ 2 [ Tupper f£(v)
A“Socog(K'vo)f —r dv = oo‘G(K:V)
lower (K- 7)

Tttt o
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The slope of the area-distribution curve 1s cobtained by differentiating
the expression for A

v
upper
éé— = 85Cq L 2<K - vo)k/d ©P ——ELZL—— av +

v c 3
0 Viower (X - v)
2
(x - VO>2 Piower ¢y ) - (¥ - ") Vypper £ (v
K - v 3 av (Y1ower % 37, ( upper)
( lower> 0 < - vupper) o]
or . _

dA t
a-‘;a = Soco E H(K’ VO)

Curves of G(X,vg) and H(K,vp) have been made up for a 65A series -
alrfoll and are given in figures 16 and 17 for values of K from O

to 2.4 and vy from O to 1. In evelusting f_i:(v—)— av, f£(v) was -
(X - v)5 .

assumed to vary linearly between alrfoll ordinate stations. Figure 18

gives a plot of f£(v) for this assumption.

For K and v, greater than 1, G(X,vg) end H(K,vy) are given
by the expressions

o
G(K,vo) = G(X,1) (& - v0)”

(x - 1)®
5(X,v0) = H(K,1) %:—E?—)

For K and vy less than 0, G(K,vp) and H(K,vo) are glven by
the expressions

a(k,v0) = G(K,0) &K= vo)” ’21’0 ° )
K
(K, vo) = H(k,0) -(E—Zfl '

My Ulotzamn:
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Correction for curved-wing—body Jjuncture.- The following sketch
shows a pointed-tilp wing mounted on a curved body.

~N
~ %0
1 ~
‘\\\\\\\ Iine of intersection of Mach
plane and wing chord plane
< T

(d)
The areas and slopes wlll be referred to the actual wing geometry
(cr, s, and %). The areas and slopes, however, will be for the exposed

pointed-wing tip.

In sketch (d) consider cne point of intersection of the wing panel
with the body. The ares of the wing cut by the Mach plane through this
point is determined only by the product of 80%0 of the exposed wing

through the point and the value of vy for the exposed wing at the point
of intersection. As the point of intersection changes, 85, cq, and vy

change and account for the intersection line. Expressed in terms of the
actual wing-body characteristics, sncq is given by

sco = lCrS?\E_ _ (l _ 7\)%‘]2

The quantity = 1s related to Ya by the expression

T
y V. - (L - A)m =

O=
1-(1—7\)1g-

The area of the exposed wing panel cut by the Mach plane can be written
as
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The ares 1s calculated for glven value of Vo. The center-line value of
v 1s given by

ve = WL~ (L= NE + - NE

The slope is obtained by differentiating the expression for A and
is given by -

ers &1 - (1 - N)E] L-- x)gle(K,vd) - 2(1 - e G(K v0)

dA =
- - L - - A
1-(1-NE+ (K- )dvO
a <
Ir —E = o,
dvo

%; l_)\EL-(l—?x)]H(KvO)

Correction for finlte wing tip.- In order to correct the pointed-
tip wing panel and slopes for the finite wing tip, the areas and slopes
cutboard of the wing tip are subtracted.

E
L

Intersection line of Mach plane and wing

From sketch (e):
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t
dAtip _ Cp8 % A
dVr 12

H(K, VO>

The center-line value of v is given by

2>
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Direclion of
+ et foree

(a) & = 90°.

Directten
rrel force

(b) 6 = 0O°.

Figure 1.- The areas and pressures which influence the drag of confilgura-
tions at supersonic speeds.
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(b) High-fineness-ratio body; }I= 10.

Figure 2.- The effect of Mach number on the area-distribution-curve slope
- of bodles of revolution.
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Figure 3.- Comparison of the drag of cones calculated with the area rule
with the dreg from exact theory (ref. 8).
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Exacl theory /=57
Area-rule ZHeory
Slender- body Iheory

2 -
\
. O I I ! ! I
- 0 2 4 6 g 1.0
/3 )2
- Figure U4.- The drag of cones in collapsed form.
61

Area-rule theory *pressure erm
O Second-order theory
] ] 1

£ 38 1.0
VeleW/ 4

Figure 5.- The drag of parabolic noses in collapsed form.
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Figure 6.- Comperison of the drag of parabolic bodies calculated with the
area rule wilth experiment and slender-body theory.
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Figure 6.- Concluded.
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Hgure T.- Comparison of the area-distribution-curve slopes for e delta
wing obtalned by using the thin- and thick-wing assumptions. NACA
65A006 sirfoil section; M = 1.414; 6 = 90°.
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Figure 8.- Example of the area-distribution-curve slope for a wing-body
confilguration for various wvalues of B cos e/ta.n A. 60° delta wing;
NACA 65A006 airfoll section.
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Figure 9.- Effect of the number of terms on the convergence of the gerideg
expression for the dreg. 60° delta wing; NACA 65A006 airfoil section.
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(a) Area distribution drag.
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(b) Ares distribution drag against roll angle.
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(¢) Configuration drag.
Figure 10.- An example of the calculatlon of the configuration drag from

the drag of the area distributlions at various values of £ cos e/tan A
60° delta wing; NACA 654006 airfoil section.
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(a) Basic body; model 1 (ref. 16); 5B - 0.0305.
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(b) Model 4 (ref. 16); 60° delte wing; NACA 65A003 airfoil section;

Sb
=~ = 0.0305. —
Sw 0 T
O3 — Experimant T
— = Arra-rwle theory
'\ —— = Equivalent body

O~ i \\

<

O/ p=

(c) Model 5 (ref. 16); 60° delta wing; NACA 654006 airfoil section;

Sb -~
—_—-—= O . 0505 .
Sw
s > arrfoi! ’\ Experiment
- Area-rute theory
F?E?- —— —— Lquivalent body
D003-63 {Frat Lovo7 -
& or —_—

(4) Model 6 (ref. 19); 60° delte wing. Thickness ratio varies from O.03%

at root to 0.06 at 0.9 semispan. g—b = 0.0305.
W

Figure 11.- Comparison of the calculeted drag with experiment and
equivalent-body test results for wing-body combinations.
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(e) Model of reference 17; A = 2.31; Ac/g = 0; NACA 65A003 airfoil section;

Sb
=— = 0.0606.
Sw
O3
Experiment
- T —— Area-rule lheory
ozl ————— Lquivalertt bodly
- <
- or e
i ) |z i | ! | | |
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(f£) Model C-3 (ref. 18); A= 33 A = 0.2; Ac/h = 459; NACA 654003 air-

foil section; Sb 0.0606.
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N (g) Model 6 (ref. 16); A= L; N = 0.6; Ac/y = 450; NACA 654006 airfoil

Sb
. section; = = 0.0606.

Figure 11.- Continued.

¥ TR TR AT



ko FWRTTS e ed 4 NACA RM L56D11

OS5 \
| Experimernt
04 ——— ——— Area-rule /wory
Airtor/ —— — —— ELgquwalent body
- T
~fome e ansc |
O3
& /_ T
02 b ~—
\
—_— i
Ol + !
o | ! J L S ! L
8 9 Lo L/ 12 43 V24 L5 /.6
M
t
(h) Model 2 (ref. 16); A = 3.04; A = 0.39k4; Azc/y = 0°; == 0.045;
Sb
— = 0.0606.
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Figure 11l.- Concluded.
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Flgure 12.- Comparison of equivalent-body drag end configuration drag
for an airplane configuration.
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Figure 15.- Comparison of the drag of delta wings calculated with two
versions of the linearized theory.

WO\ CONSEDER AL



Lo NACA RM 156D11

O0/6

o/2
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Figure 1h.- Effect of wing-panel separation on wing drag. 60° delta
wing; NACA 654003 airfoill section.
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Flgure 15.- Ccmparison of the sum of component drags wilth the configura-
tion drag. 60° delta wing; NACA 65A003 airfoil section.




NACA RM L56D11 YCCRrIOENTIAL _ 43

\
4

“

A8

Ao

24
Glrv)

P

o .2 K4 & .8 Lo L2 VA4 /6 48 20 22 24

Figure 16.- Area distribution parameter a(K,vg) Tor 65a serles ailrfoil.
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Figure 17.- Area-distribution-sXope parameter H(K,vg) for 65A series
alrfoil.
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(b) vy from 0.5 to 1.0.
0

Flgure 17.- Concluded.
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Figure 18.- Approximation of 65A series airfoil for the calculation of
G(K,vy) end H(K,vg)-
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